Electron-transfer events leading to reconstitution of oxygen-evolution activity in manganese-depleted photosystem II membranes.
نویسندگان
چکیده
O2-evolution activity and the Mn complex can be reconstituted in photosystem II by a process called photoactivation. We have studied the elementary steps in photoactivation by using electron paramagnetic resonance spectroscopy to probe electron transport in Mn-depleted photosystem II membranes. The electron donation reactions in Mn-depleted photosystem II were found to be identical with those in untreated photosystem II, except that electron donation from the Mn complex was absent and could be replaced by slower electron donation from exogenous Mn2+. Mn2+ photooxidation by Mn-depleted photosystem II membranes correlates with reconstitution of O2-evolution activity. However, photooxidation of Mn2+ occurs in competition with photooxidation of the tyrosine residue YD, and cytochrome b-559. Thus, these two species are excluded from direct participation in the initial steps in the assembly of the Mn complex. Because photooxidation of Mn2+ is slower than photooxidation of the competing electron donors, cytochrome b-559 and chlorophyll, as well as recombination of the charge-separated states chlorophyll+QA- or YZ+QA-, these other reactions dominate in a single photochemical turnover reaction. This provides a molecular basis for both the low yield and low quantum yield of photoactivation. The first photochemical step in the assembly of the Mn complex results in photooxidation of one Mn2+ ion. Therefore, the first intermediate in assembly of the Mn complex contains Mn3+. On the basis of these results and previous kinetic studies [Miller, A.-F., & Brudvig, G. W. (1989) Biochemistry 28, 8181], we conclude that the second intermediate of Mn complex assembly contains Mn2+Mn3+, which is photooxidized to Mn3+2.
منابع مشابه
The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal.
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) re...
متن کاملRegulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH
Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides...
متن کاملQuality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress.
Moderate heat stress (40 degrees C for 30 min) on spinach thylakoid membranes induced cleavage of the reaction center-binding D1 protein of photosystem II, aggregation of the D1 protein with the neighboring polypeptides D2 and CP43, and release of three extrinsic proteins, PsbO, -P, and -Q. These heat-induced events were suppressed under anaerobic conditions or by the addition of sodium ascorba...
متن کاملN-terminal truncations of manganese stabilizing protein identify two amino acid sequences required for binding of the eukaryotic protein to photosystem II and reveal the absence of one binding-related sequence in cyanobacteria.
Manganese stabilizing protein (MSP) is an intrinsically disordered extrinsic subunit of photosystem II that regulates the stability and kinetic performance of the tetranuclear manganese cluster that oxidizes water to oxygen. An earlier study showed that deletion of the (1)E-(3)G domain of MSP caused no loss of activity reconstitution, whereas deletion of the (4)K-(10)E domain reduced binding of...
متن کاملCofactor X of photosynthetic water oxidation: electron transfer, proton release, and electrogenic behaviour in chloride-depleted Photosystem II
Ž . Ž . Four quanta of light, absorbed by Photosystem II PS II , drive the catalytic center of oxygen evolution OEC through w x Ž . Ž . five transitions which are named S ́S to S ́S TMS 1 . Manganese Mn , tyrosine Y and a chemically 0 1 3 4 0 4 Z ill-defined compound, X, serve as redox cofactors. Transient optical absorption spectra of PS II core particles have led us to ) ) y w x propose that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 29 6 شماره
صفحات -
تاریخ انتشار 1990